\(\int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx\) [157]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 93 \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx=\frac {2^{\frac {9}{4}+m} g^3 \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {1}{4}-m,\frac {1}{4},\frac {1}{2} (1-\sin (e+f x))\right ) (1+\sin (e+f x))^{-\frac {1}{4}-m} (a+a \sin (e+f x))^{1+m}}{3 a c^2 f (g \cos (e+f x))^{3/2}} \]

[Out]

1/3*2^(9/4+m)*g^3*hypergeom([-3/4, -1/4-m],[1/4],1/2-1/2*sin(f*x+e))*(1+sin(f*x+e))^(-1/4-m)*(a+a*sin(f*x+e))^
(1+m)/a/c^2/f/(g*cos(f*x+e))^(3/2)

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {2919, 2768, 72, 71} \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx=\frac {g^3 2^{m+\frac {9}{4}} (\sin (e+f x)+1)^{-m-\frac {1}{4}} (a \sin (e+f x)+a)^{m+1} \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-m-\frac {1}{4},\frac {1}{4},\frac {1}{2} (1-\sin (e+f x))\right )}{3 a c^2 f (g \cos (e+f x))^{3/2}} \]

[In]

Int[((g*Cos[e + f*x])^(3/2)*(a + a*Sin[e + f*x])^m)/(c - c*Sin[e + f*x])^2,x]

[Out]

(2^(9/4 + m)*g^3*Hypergeometric2F1[-3/4, -1/4 - m, 1/4, (1 - Sin[e + f*x])/2]*(1 + Sin[e + f*x])^(-1/4 - m)*(a
 + a*Sin[e + f*x])^(1 + m))/(3*a*c^2*f*(g*Cos[e + f*x])^(3/2))

Rule 71

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
 - a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-d/(b*c - a*d), 0]))

Rule 72

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]), Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] &&
(RationalQ[m] ||  !SimplerQ[n + 1, m + 1])

Rule 2768

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[a^2*(
(g*Cos[e + f*x])^(p + 1)/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2))), Subst[Int[(
a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
 EqQ[a^2 - b^2, 0] &&  !IntegerQ[m]

Rule 2919

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*(c^m/g^(2*m)), Int[(g*Cos[e + f*x])^(2*m + p)*(c + d*Sin[e + f*x])
^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && Integer
Q[m] &&  !(IntegerQ[n] && LtQ[n^2, m^2])

Rubi steps \begin{align*} \text {integral}& = \frac {g^4 \int \frac {(a+a \sin (e+f x))^{2+m}}{(g \cos (e+f x))^{5/2}} \, dx}{a^2 c^2} \\ & = \frac {\left (g^3 (a-a \sin (e+f x))^{3/4} (a+a \sin (e+f x))^{3/4}\right ) \text {Subst}\left (\int \frac {(a+a x)^{\frac {1}{4}+m}}{(a-a x)^{7/4}} \, dx,x,\sin (e+f x)\right )}{c^2 f (g \cos (e+f x))^{3/2}} \\ & = \frac {\left (2^{\frac {1}{4}+m} g^3 (a-a \sin (e+f x))^{3/4} (a+a \sin (e+f x))^{1+m} \left (\frac {a+a \sin (e+f x)}{a}\right )^{-\frac {1}{4}-m}\right ) \text {Subst}\left (\int \frac {\left (\frac {1}{2}+\frac {x}{2}\right )^{\frac {1}{4}+m}}{(a-a x)^{7/4}} \, dx,x,\sin (e+f x)\right )}{c^2 f (g \cos (e+f x))^{3/2}} \\ & = \frac {2^{\frac {9}{4}+m} g^3 \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {1}{4}-m,\frac {1}{4},\frac {1}{2} (1-\sin (e+f x))\right ) (1+\sin (e+f x))^{-\frac {1}{4}-m} (a+a \sin (e+f x))^{1+m}}{3 a c^2 f (g \cos (e+f x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.03 \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx=-\frac {2^{\frac {9}{4}+m} g \sqrt {g \cos (e+f x)} \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},-\frac {1}{4}-m,\frac {1}{4},\frac {1}{2} (1-\sin (e+f x))\right ) (1+\sin (e+f x))^{-\frac {1}{4}-m} (a (1+\sin (e+f x)))^m}{3 c^2 f (-1+\sin (e+f x))} \]

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*(a + a*Sin[e + f*x])^m)/(c - c*Sin[e + f*x])^2,x]

[Out]

-1/3*(2^(9/4 + m)*g*Sqrt[g*Cos[e + f*x]]*Hypergeometric2F1[-3/4, -1/4 - m, 1/4, (1 - Sin[e + f*x])/2]*(1 + Sin
[e + f*x])^(-1/4 - m)*(a*(1 + Sin[e + f*x]))^m)/(c^2*f*(-1 + Sin[e + f*x]))

Maple [F]

\[\int \frac {\left (g \cos \left (f x +e \right )\right )^{\frac {3}{2}} \left (a +a \sin \left (f x +e \right )\right )^{m}}{\left (c -c \sin \left (f x +e \right )\right )^{2}}d x\]

[In]

int((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x)

[Out]

int((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x)

Fricas [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{{\left (c \sin \left (f x + e\right ) - c\right )}^{2}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

integral(-sqrt(g*cos(f*x + e))*(a*sin(f*x + e) + a)^m*g*cos(f*x + e)/(c^2*cos(f*x + e)^2 + 2*c^2*sin(f*x + e)
- 2*c^2), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))**(3/2)*(a+a*sin(f*x+e))**m/(c-c*sin(f*x+e))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{{\left (c \sin \left (f x + e\right ) - c\right )}^{2}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*(a*sin(f*x + e) + a)^m/(c*sin(f*x + e) - c)^2, x)

Giac [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (a \sin \left (f x + e\right ) + a\right )}^{m}}{{\left (c \sin \left (f x + e\right ) - c\right )}^{2}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^m/(c-c*sin(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((g*cos(f*x + e))^(3/2)*(a*sin(f*x + e) + a)^m/(c*sin(f*x + e) - c)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^m}{(c-c \sin (e+f x))^2} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^m}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^2} \,d x \]

[In]

int(((g*cos(e + f*x))^(3/2)*(a + a*sin(e + f*x))^m)/(c - c*sin(e + f*x))^2,x)

[Out]

int(((g*cos(e + f*x))^(3/2)*(a + a*sin(e + f*x))^m)/(c - c*sin(e + f*x))^2, x)